피보나치 수는 많은 성질을 가지고 있다. 이 포스트에서 소개하고자 한다. 여기서 살펴볼 피보나치수열은 다음과 같다. $F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2} \ (n\ge3)$ 1. $\sum_{k=1}^n F_k = F_{n+2} - 1$ 정의에 따라 $F_1 = F_3 - F_2$ $F_2 = F_4 - F_3$ ... $F_n = F_{n+2} - F_{n+1}$ 이다. 그럼 식을 다음과 같이 변형할 수 있다. $F_1+F_2+...+F_n$ $= (F_3-F_2)+(F_4-F_3)+...+(F_{n+2}-F_{n+1})$ $= F_{n+2} - F_2$ $= F_{n+2} - 1$ 이를 통해 $\sum_{k=a}^b F_k $ $= \sum_{k=1}^b F_k..