순환군 $G$가 군이고 $a \in G$일때 $H=\{ a^n | n \in \mathbb{Z}\}$인 군 $H$는 $G$의 부분군이며 a에 의해서 생성되는 G의 순환 부분군(cyclic subgroup $\langle a \rangle$ of generated by $a$)이다. 또한 $H$는 $a$를 포함하는 $G$의 가장 작은 부분군이다. $a$는 $H$의 생성원(generator of $G$)이며 군 $H=\langle a \rangle$는 순환적(cyclic)이라고 한다. 순환군의 성질 1. 모든 순환군은 가환이다. 2. 순환군의 부분군은 순환적이다. 3. $G = \langle a \rangle$라 할때 $G$는 $\mathbb{Z}$나 $\mathbb{Z_n}$과 동형이다. 4. $G = \..